Blog

The Properties And Application of Single-layer graphene

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



What is single-layer Graphene?
Single-layer Graphene is a two-dimensional honeycomb graphite made of one layer of carbon. The sp2 bond between carbon atoms makes it the thinnest, but stiffest, material in the universe (its fracture strength is approximately 200 times higher than that of steel). It is almost completely transparent, and absorbs only 2.3% light. The thermal conductivity of this material is up to 5300 W/m. The K value is higher than that of carbon nanotubes or diamond. The resistivity is about 0.96×10-6 O.cm and is smaller than copper and silver. Graphene also has a high specific surface area (2630 m2/g). The graphene’s novel characteristic is that, in the absence doping, it is the Fermi levels located at the junction of the conduction band with the valence. The electron’s mass is zero at this point. This means that the carrier will appear as a Dirac. Fermions can have excellent carrier conductivity and carry current densities of up to 200,000 cm2/V. The graphite conductivity is still present even without carrier transmission. The graphene mobility is s, and the speed is 1/300 the speed of light. Its Hall effect at room temperature expands its original temperature range ten-fold. This shows unique carrier characteristics as well as excellent electrical qualities. The graphene’s unique electronic properties make it a convenient way to confirm relativistic quantum-electrodynamic effects, which are hard to observe in particle science.
The Application of Single-layer Graphene

Graphene, the most suitable material for creating nanoelectronics devices. The devices made from it are smaller and consume less power. They also transmit electrons more quickly. Due to its high electron transfer speed and excellent characteristics of electron transmission (no scattering), it can be used to make transistors with high frequency (upto THz). Even when only one hexagonal structure is present, graphene’s nanometer-scale stability is very important for developing molecular electronic devices. Single-electronic components prepared by electron beam printing and etching technology may break through the limits of traditional electronic technology, and have excellent application prospects in the fields of complementary metal-oxide-semiconductor (CMOS) technology, memory, and sensors, and are expected to be the development of ultra-high-speed computer chips. The medical industry will also benefit greatly from this breakthrough.

Single-layer graphene film can also be made into microscopic filters to decompose gasses. In medical research, this thin, one-atom thick film can hold molecules to be observed and analyzed by electron microscopes. This will greatly help the medical community create new medical technologies. Graphene is able to detect gases with an external noise and accurately identify individual molecules. It has potential applications as chemical sensors and molecular probers.

Single-layer graphene is widely used as a semiconductor electronic package due to its excellent properties in terms of electrical, mechanical, and thermal properties.

Tech Co., Ltd. () has over 12 years’ experience in research and development of chemical products. Contact us to send an inquiry if you are interested in high-quality Single-layer Graphene.

Resent Products