Tag: Boron carbide

Page 1/1

Email: inquiryartista2020@gmail.com


    Blog

    What is Boron carbide

    Boron carburide is a high-performance carbon compound, which is composed primarily of boron, carbon, and other elements. The chemical formula for B4C is B4C. It has high hardness and melting point. It's also widely used by industries, the military, aerospace and other fields. The article will give a detailed description of the physical properties and chemical composition, preparation techniques, performance characterization and application fields.

    Physical properties

    Boron carbide, a non-metallic inorganic material with a density of 2.52g/cm3, is a dense inorganic. It has a cubic lattice structure, a dense black crystal and a 0.243nm lattice constant. Boron carbide exhibits a low electrical conductivity of only 10-6S/m, and has excellent insulation. Its thermal resistance is 97W/m*K. This is lower than that of metals, silicon and ceramics but higher than glass and other materials.

    Chemical properties

    Boron carbide exhibits chemical stability, and it is not reactive to acids and alkalis. B4C is reactive with O2, H2O and other substances. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for long term use in high-temperature, corrosive environments.

    Preparation method

    Preparation methods for boron carbide The main methods are the arc melting and chemical vapour deposit method.

    Methode de réduction du carbothermal

    Carbon thermal reduction (CTR) is widely used to prepare boron carbide . This method generates carbon dioxide and boron carburide by melting boric black and carbon. The reaction formula is B2O3+3C + B4C+CO. The reaction temperature ranges from 1500 to 1700°C. This method has the advantage of being simple, low-cost, and easy to use. However, the boron carbide produced is not of high purity.

    Arc melting method

    In the arc melting process, graphite electrodes are heated and melted in a reaction between boric acid and borax to create boron carbide. The reaction equation is: B2O3+3C + B4C. Reaction temperature is usually 18002000 degrees. This method yields boron-carbide with a high degree of purity and fine particles, but is costly and complicated.

    Chemical vapour deposition method

    Chemical vapour deposition uses high temperature reactions of gaseous carbon black and borane to create boron carburide. The reaction formula is B2H6+6C B4C+6H2. The reaction temperature ranges between 1000-1200°C. This method yields boron-carbide with a high degree of purity and ultrafine particles, but is costly and complicated.

    Performance Characterization

    Physical, chemical, mechanical, and other properties are primarily considered when describing the performance of boron carbide.

    Physical property

    Density, conductivity and thermal conductivity are the main physical properties of Boron carbide. The density is 2.52g/cm3, conductivity 10-6S/m, and thermal conductivity 97W/m*K.

    Chemical Property

    Boron carbide exhibits chemical stability, and it is not reactive to acids and alkalis. B4C is reactive with H2O and O2. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for long term use in high-temperature, corrosive environments.

    Mechanical property

    Boron carbide's high hardness, melting temperature, and heat transfer make it a popular material in many industries. Hardness of 3500kg/mm2, melting point 2450, and heat transfer rate 135W/m*K are among the characteristics that make boron carbide so popular in industries, military, aerospace, and other fields.

    RBOSCHCO

    RBOSCHCO, a global chemical material manufacturer and supplier with more than 12 years of experience, is known for its high-quality Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. RBOSCHCO, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions that can help industries improve their efficiency, create value and overcome various challenges. Send an email if you're looking for Boron Carbide to: sales1@rboschco.com

    Blog

    Boron Carbide and Silicon Can Make Body Armor More Impact

    Boron Carbide - What is it and what does it do?

    Boron carburide also known by the name black diamond has a molecular formula of B4C. It is usually a gray or black powder. It is one the hardest materials and is used as tank armor, in body shields, and for many other industrial purposes.

    Upgrade to High-grade body armor

    In the past 12 year, researchers have looked for ways to reduce damage caused by bullets traveling at high speeds hitting armor made from boron carbide. Dr. Kelvin Yu Xie Assistant Professor of Materials Science and Engineering said: "Our research has now met this need. This is an important step toward designing advanced body armor to protect against powerful weapons in battle.

    Boron carbide has been called a "black diamand" and is only second in hardness to cubic boron. The boron-carbide armor material is lighter and harder than silicon carbide and easier to mass-produce.


    Boron Carbide Body Armor Lack

    According to Texas A&M University's research, the main drawback of boron carbide is that it can easily be damaged by high-speed impacts. Xie, in a recent statement, said: "Boron carbide is able to stop bullets traveling at 900 m/s. It can therefore effectively block the majority of pistol bullets. If the speed is exceeded, then boron carbide will lose its trajectory. Performance has become less efficient."


    Scientists have discovered that high-speed vibrating boron carbide will lead to a phase shift. One of these changes will alter its internal structure, presenting it in two or multiple physical states. The bullet's impact transforms boron carbide from a systematically organized crystalline state into a disorderly-arranged glass state. This glass-like condition weakens material integrity in the area of contact between the bullet and the boron carbide.

    Boron Carbide Plus Silica: Benefits

    Xie explained: "When boron carbide undergoes a state change, its glassy form creates a pathway that cracks can follow. Any damage caused locally by the bullet's impact will spread to the entire material. ."


    Previous computer simulations suggested that adding small amounts other elements could make boron carbide less brittle. The researchers used a diamond tip to create controllable dents in a boron-carbide sample. This was done to simulate the initial impact from a high speed bullet. The researchers then observed the micro-damage caused by the impact using a high-power electronic microscope.


    Xie, his colleagues and their research showed that the amount of phase changes was reduced by 30% even if there is a low silicon content. This reduces indentation damage by a significant margin. Xie says that while silicon may enhance the properties boron carbide, further experiments are necessary to find out if other elements also can improve the properties.


    Tech Co., Ltd. () is an experienced boron-carbide powder manufacturer. We have over 12 years' experience in research and product development. You can send us an email if you want to buy high quality Boron carbide Powder.

    Products Category


    Innovative materials

    Cement foaming agent, also known as foaming concrete foaming agent, refers to an admixture that can reduce the surface tension of liquid and generate a large amount of uniform and stable foam for the production of foamed concrete. Foaming agent is a kind of substance that can make its aqueous...

    Molecular sieves

    Molecular sieve is a synthetic hydrated aluminosilicate (zeolite) or natural zeolite with the function of screening molecules.Zeolite molecular sieve has a complex and changeable structure and a unique pore system, and is a catalyst with excellent performance. Uses of Molecular Sieves Molecular sieve is mainly caused by molecular attraction, which...

    Surfactant

    Any substance that dissolves in water and can significantly reduce the surface energy of water is called a surface active agent (surface active agent, SAA) or surface active substance. Surfactants reduce the surface tension of water by adsorbing at the gas-liquid two-phase interface, and can also reduce the oil-water interfacial...

    Lithium Battery Anode

    Lithium battery anode material are generally divided into carbon-based negative electrodes and non-carbon-based negative electrodes. Among them, carbon-based negative electrodes can be divided into graphite, hard carbon, and soft carbon negative electrodes. Graphite can be divided into artificial graphite, natural graphite, and mesocarbon microspheres; non-carbon The negative electrode includes lithium...

    MAX Phase

    The MAX phase is a new type of ternary layered compound, which is composed of three elements, M, A and X, and its general chemical formula is MN+1AXN, (wherein, M: pre-transition metal, A: Group A element, X: Carbon or nitrogen, N=1, 2, 3…), both metal materials (excellent electrical and thermal...

    Metal Alloy

    Alloy is a mixture with metallic properties synthesized by two or more metals and metals or non-metals by certain methods. Generally obtained by fusion into a homogeneous liquid and solidification. According to the number of constituent elements, it can be divided into binary alloys, ternary alloys and multi-element alloys. Two...

    Nanoparticles

    Nanometer-scale structural materials are referred to as nanometer materials for short, which refer to the size of their structural units ranging from 1 nanometer to 100 nanometers. Since its size is close to the coherence length of electrons, its properties are greatly changed due to the self-organization brought about by...

    Stearic Acid Series

    Stearic acid, namely octadecanoic acid, molecular formula C18H36O2, is produced by the hydrolysis of oil and is mainly used to produce stearate. Dissolve each gram in 21ml of ethanol, 5ml of benzene, 2ml of chloroform or 6ml of carbon tetrachloride. Applications of Stearic acid Mainly used in the production of...

    Selenide Powder

    There is a typical antagonism between selenium and metals, and selenium with different valences can combine with metal ions to form metal selenides. Metal selenides have attracted much attention in recent years due to their excellent optoelectronic and catalytic properties, and have potential applications in solar cells, pollutant degradation, and...

    Telluride Powder

    Tellurium is a typical scattered element. Tellurium and its compounds are widely used in metallurgy, chemical industry, electronics, energy, medicine and health and other industries.Telluride is a compound of tellurium with a metal or a non-metal. Such as the representative of the telluride with a non-metal is hydrogen telluride, which...

    Silicide Powder

    Binary compounds formed by certain metals (such as lithium, calcium, magnesium, iron, chromium, etc.) and some non-metals (such as boron, etc.) and silicon. Generally crystalline, with metallic luster, hard and high melting point. Uses of Silicide Powder Metal silicide as an electric heating element is one of its earliest applications....

    Nitride Powder

    Nitride is similar to metal in appearance, hardness and conductivity, and generally has high hardness, high melting point, stable chemical properties, and electrical conductivity. Such as titanium nitride, vanadium nitride, zirconium nitride, tantalum nitride, etc. is hard and refractory, and has the characteristics of chemical corrosion resistance and high temperature...

    Carbide powder

    Carbide powder is a binary compound formed by carbon (other than hydrogen) which is smaller or similar to electronegativity. Carbides have a higher melting point. Most carbides are carbon and metal at high temperatures. The next reaction is obtained. The properties of the element are divided into metal carbides and...

    Oxide Powder

    Oxide powder is the chemical compound solid powder contains one oxygen and another element, such as metal oxides, metal oxides are a chemical compound formed between metals, specifically cations such as Na, K, Li, etc., and oxygen. These compounds require at least of two elements, as compounds do, and always...

    Sulfide Powder

    Sulfide powder refers to the chemical compounds powder with large families of inorganic and organic compounds, e.g. copper sulfide, Zinc sulfide, molybdenum disulfide, tungsten disulfide powders and so on. Sulfides and their similar compounds include a series of metals and semi-metallic elements combined with S, Se, Te, As, Sb, Bi...

    3D Printing Powder

    3D Printing powder are metal powders that are reduced to fine particles. 3D printing metal powder are the the preliminary base materials for most 3D printing processes that produce metallic parts. 3D printing, also known as additive manufacturing (AM), is the manufacturing of parts and products in a layer-by-layer fashion....

    Boride Powder

    Metallic boride powders are very unique but functional new ceramic materials.The boride powders have many advantages such as high melting point, high hardness, good electrical conductivity and thermal conductivity. Therefore, boride powder can be used as heat-resistant and hard materials that can be accurately processed by electric discharge machining. Such...

    Elementary

    Elementary substance is a pure chemical substance that consists of atoms belonging to a single chemical element, it is widely used in many industrial fields. Are you looking for high purity & quality elementary substance such as hafnium diboride powder, zirconium diboride powder, aluminum diboride powder, magnesium diboride powder? Biomedicalmaterialsprogram...

    Resent Products